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Abstract

We calculate the algebra of the observables for 2+1 super de Sitter gravity, for
one genus of the spatial surface. The algebra turns out to be an infinite Lie algebra
subject to non-linear constraints. We solve the constraints explicitly in terms of five
independent complex supertraces. These variables are the true degrees of freedom of
the system and their quantized algebra generates a new structure which we refer to as
a “central extension” of the quantum algebra SU(2),.

1 Introduction

The discovery by Witten that many gravity theories in 2 + 1 dimensions are equivalent to
Chern Simons theories, and are in principle exactly quantizable, has sparked a great deal of
interest in their study [1]. Perhaps the key obstacle in carrying out this quantization explicitly
has been our poor understanding of the observable phase space. Pure Chern-Simons theories
in vacuum are locally trivial and interesting situations arise either in the presence of sources
or when the topology of the spacé—time manifold is non-trivial. In either case, the observable
degrees of freedom for the field theory are the traces of the holonomies (alternatively called
the integrated connections) associated to non-contractible loops of the space-time manifold
M, which are classified by the fundamental group m(M). These traces span the reduced
phase space of the theory in a highly redundant way. Indeed, the group 7 (M) is infinite,
while the dimension of the reduced phase space is known to be (2g — 2) x dim(4), where
A is the Lie algebra considered in the Chern-Simons action. The traces are subject to non-
linear constraints (NLC) which depend on the characteristic equation for the matrices in the
defining representation. Our approach here is to first reduce the classical system to a finite-
dimensional observable phase space and then quantize. Unfortunately, this is an extremely
difficult task, which has only recently been solved for arbitrary genus in de Sitter gravity 2
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The reduced phase space is well-understood for any genus in Poincaré gravity [3], but in terms
of inhomogeneous variables which have not yet been generalized to curved spacetimes. The
purpose of this contribution is to provide the reduced phase space for one genus in 2+1 super
de Sitter gravity.

2 The Algebra of Supertraces

Following previous discussions, we will consider the case when the space-time manifold has
the topology M = £ x R, where R is the time and T is an arbitrary closed, orientable two-
dimensional surface of genus g. Also we will restrict the discussion to only one genus of such
a surface. The Poincaré [4,5], de Sitter [6], and conformal [7| cases have been previously
discussed along these lines and the Poisson bracket algebra of the traces calculated. The
quantized version of the algebra of observables for the de Sitter case provides a realization of
a pair of commuting SU(2), quantum algebras [8].

Witten’s formulation of 2+1 dimensional gravity theories as Chern-Simons theories has
been extended to the supersymmetric case in Ref. [9], where the super de Sitter case is studied
by considering the orthosymplectic group OSp(1|2;€ ) as the gauge group. The system is
described by the Chern Simons action [10],

I=1Trf (dA—gA/\A)/\A, (1)
27 I 3

where A = A, dz* ( u =0,1,2) is the superconnection

A= AAT, = P, + w°J,s + x°Ua + 0°V,, (2)

which takes values on the Lie algebra of OSp(1|2;€ ). Here T4 = (Pa,Ja,Ua,Va), where
Pa,Ja(a = 0,1,2) are the bosonic generators and Uq,Va(a =1,2) are the fermionic ones. The
fields x*,©% are spinors whose components are odd Grassmann numbers.The trace in Eq.(1)
is deﬁned in terms of the group-invariant non-degenerate bilinear tensor
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Tr(TaTs)=Dan=|"0" o _ps o |’ 3)
0 0 0  2¢ap

where 14 = diag(—1,1,1),€q5 = Gga, with €13 = +1 and ¢4 e"B 65 " The generators
~ satisfy the superalgebra of OSp(1 ]| 2); €) which is given in Ref. [9]. o
The constraints equations that follow from (1) imply that A is a pure ga.uge, that is
A = dyyp~! where ¥ € 0Sp(1|2;€). The Poisson brackets of A are easily calculated from the
a.ctxon (1) [11],

{Ai(2),4;(4)}p.p. = —26;; M 6%(z — y), (4a)

where T,y are generic pomts on the &, ¢,7 = 1,2 are spatial vector indices on T, ¢,; = —¢,,
with €;3 = +1 and
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1
MEDABTA®TB=Pa®Ja+Ja®Pa+E(Ua@Ua-Va®Va)i (4b)

with D4cD%8 = §3.
Let us consider two generic points P,Q on ¥ and a path p joining them, parametrized by
z(t), t € [0,1] with z(0) = P and z(1) = Q. The solution to the differential equation

dy
L= aw (5

subject to the boundary condition ¢(0) = 1, where A; = A,T“ is a tangent vector along p,
will depend only on the homotopy class of p and it is denoted by 1/(p) (see Ref. [6] for details).
For a second path p’ with end points Q, R we have the solution ¥(p’) of (5). The solution for
the path p’p, with end points P, R is then

P(p'p) = % (p")¥(p). (6)

By restricting to closed paths, this equation defines a group homomorphism ¢ : 7 (L) —
OSp(1|2; €). The fundamental group of the surface T based on the point B, (I, B), is pre-
sented via 2g generators u;, v; t = 1,...,¢g which satisfy the relation ulvlul'lvl_l...ugvgu;lvgl =
1.

Let v, ¢ be generic elements of OSp(1|2;€ ). The Poisson brackets of the integrated
connections ¥(p), ¥(o) of two elements of 7, (Z), with base points P, Q respectively, which
have a single intersection may be calculated from (4) by a procedure already established in
Refs. [4,6]. The result is

{¢a B(p)’ ¥."(0) }P.B. =2s(-1) [(9(B)—9(n) Y g(a)—g(n) )+(g(n)—a(6) )(g(v)—g(6) )]

Meo ™ Yo P (pi)ba (p1) 0 ¥ (0:)¥u °(0f) (7)
where Mgy "? = DAB(T4)¢" (Ts)e ®. The subindex ¢ (f) labels that part of the path before
(after) the intersection and s = s(p,0) = —s(0,p) = *1 is called the intersection number.

The integrated connection (p) is not gauge invariant, but the supertrace C(p) =
Stry(p) = (—1)9(2) 4, * is, namely:
C(p) = Clvpv™) (8)

with p € m (o) and v being any open path. Equation (8) expresses the invariance of C(p)
under a change of the base point of 71(¢). Thus, one can calculate the Poisson bracket of two
closed paths p and o based on two different points P and Q respectively and make P = Q after
the calculation, so that p, o become elements of 7,(0; Q). By supertracing (7) one obtains [13]

{C(r),C(o) }pp. = isVA (C(P") - C(Pa—l)) ’ (9)

for paths with a single intersection or with no intersection (s = 0). This result is the same
that has been obtained for the de Sitter, Poincaré and conformal groups [4-7].
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By repeated use of (7) and with the help of (6) we obtain the following general formula
for the Poisson brackets of elements p, ¢ of 7;(Z; Q) with n intersections

{Clp), Clo)}pp. = iVA zs,, (Cloxor) — Clowrz")) (10)

where si is the intersection number of the k-th intersection and the subindex k on each path
means that the product of them is constructed by taking the k-th intersection point as the
base point, instead of the point Q.

Any matrix ¥(p) which is an element of OSp(1|2; € ) satisfies the generalized Cayley-
Hamilton identity

¥(p%) — (C(p) +2) (¥(p?) —¥(p)) -1 =0. (11)

Multiplying (11) by ¥(0p~!) and supertracing one obtains the non linear constraint

R(p, 0) = C(p)C(po) — C(p)C(0) - C(p*0) + C(po™") +2C(po) —2C(0) =0.  (12)

In order to obtain the algebra of observables we must take into account the relation (12). This
relation appears to be an ideal of the traces algebra. Although we were not able to obtain an
algebraic proof, computer calculations in various examples indicate that R has zero Poisson
bracket with the traces, as in the ordinary de Sitter case [6]. This implies that the relations
(12) hold “strongly”, i.e. that they can be used within the Poisson brackets (10).

Fortunately, it is possible to solve the relations R(u,v) = O explicitly, by expressing
all traces on one genus in terms of five fundamental ones, which can be chosen as C(u) =
A, C(v) = B,C(uv) = C, C(uv?) = D and C(uvu?v?) = E. This property can be shown
to be a direct consequence of the identity (12).

Finally, we can calculate the algebra satisfied by these variables. To this end it is more
convenient to define the following combinations of the basic traces previously introduced

1+4 1+ B 1+C
X== Y= 2=
1+D
vei(~tZyx-2vz
2( 2 T ) (13)
U—}%-E—Z(1+8XYZ—4X’—4Y’
HAX YV +4V).

This choice is dxctated by the property tha.t in the de Sitter lumt (fermlomc varlables equal to
zero) X,Y and Z go into the variables used in Ref. [6], while U and V' go to zero. The Poisson
brackets of these variables can be computed with the help of (10), assuming that the relations
(12) are indeed an ideal of the algebra. We find

{X,Y}pp =isVA(Z - XY — V)

14
{X’V}P.B. = {X, U}P.B. ={U,V}pp =0, (14

270



plus cyclical permutations of X,Y, Z.
We quantize the above system using the correspondence principle XY — YX = ifix
{X,Y}p p. and symmetrising the XY product. The result can be written as

XYy —e 3y x = 2isin0/2 (Z - V)s (15)

and cyclical, where tanf/2 = ‘Mz@ and U,V are central elements. The de Sitter limit (U =
V = 0) on Ref. [6] is clearly recovered from Eqs. (15) now in terms of arbitrary complex
variables X,Y and Z. The algebra (15) provides a central extension of SU(2)q [14], with V'
being the central charge.

3 The NLC Constraints

These are relations among the supertraces (see for example Eq. (12)), which constitute
the basic tool for reducing the original infinite dimensional supertraces algebra to a finite one.
A general way of obtaining such relations is starting from a Cayley-Hamilton type identity
satisfied by the matrix. In the case of a supermatrix M, the characteristic polynomial is not
given by p(z) = Sdet(M —zI), and the problem of constructing such polynomial in the general
case seems to be still an open one. The basic definition is p(z) = IT;(A; — z), where A; are the
eigenvalues of M and the idea is to translate this into “simpler” operations which would bypass
the explicit calculation of the eigenvalues. In the case of an arbitrary 2 x 2 supermatrix with
entries My3 = a, Myj3 = a, My =, My; = b, where a,b (a, ) are even (odd) Grassmann
numbers, the characteristic polynomial is

p(z) = (a — b)z? - (a® — b + 20B)z + (ab(a — b) + (a + b)af), (16)

and one can verify that p(M) = 0 as a matrix identity. Another explicit example of such
polynomials is Eq. (11) which corresponds to a particular case of a 3 x 3 supermatrix.
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